
1

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asyn: An Interface Between
EPICS Drivers and Device

Support

Mark Rivers, Marty Kraimer, Eric Norum

University of Chicago

Advanced Photon Source

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

What is asyn and why to we need it?
EPICS IOC architectureMotivation

•Standard EPICS
interface between
device support and
drivers is only
loosely defined
•Needed custom
device support for
each driver
•asyn provides
standard interface
between device
support and device
drivers
•And a lot more too!

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

History – why the name asyn
• The initial releases of asyn were limited to “asynchronous”

devices (e.g. slow devices)
– Serial
– GPIB
– TCP/IP

• asyn provided the thread per port and queuing that this
support needs.

• Current version of asyn is more general, synchronous (non-
blocking) drivers are also supported.

• We are stuck with the name, or re-writing a LOT of code!

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asyn Architecture
Device support (or SNL code,
another driver, or non-EPICS

software)

device device

Port (named object)

Port driver

addr=0 addr=1

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

2

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Control flow – asynchronous driver

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Control flow – synchronous driver

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – Methods for drivers
• registerPort

– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface
• Example code:

pPvt->int32Array.interfaceType = asynInt32ArrayType;
pPvt->int32Array.pinterface = (void *)&drvIp330Int32Array;
pPvt->int32Array.drvPvt = pPvt;

status = pasynManager->registerPort(portName,
ASYN_MULTIDEVICE, /*is multiDevice*/
1, /* autoconnect */
0, /* medium priority */
0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);
status = pasynInt32Base->initialize(pPvt->portName,&pPvt->int32);
pasynManager->registerInterruptSource(portName, &pPvt->int32,

&pPvt->int32InterruptPvt);

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – Methods for Device Support
• Connect to device (port)
• Create asynUser
• Queue request for I/O to port

– asynManager calls callback when port is free
• Will be separate thread for asynchronous port

– I/O calls done directly to interface methods in driver
• e.g. pasynOctet->write()

• Example code:
/* Create asynUser */

pasynUser = pasynManager->createAsynUser(processCallback, 0);
status = pasynEpicsUtils->parseLink(pasynUser, plink,

&pPvt->portName, &pPvt->addr, &pPvt->userParam);
status = pasynManager->connectDevice(pasynUser, pPvt->portName, pPvt->addr);
status = pasynManager->canBlock(pPvt->pasynUser, &pPvt->canBlock);
pasynInterface = pasynManager->findInterface(pasynUser, asynInt32Type, 1);
...
status = pasynManager->queueRequest(pPvt->pasynUser, 0, 0);

...
status = pPvt->pint32->read(pPvt->int32Pvt, pPvt->pasynUser, &pPvt->value);

3

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynManager – asynUser
• asynUser data structure. This is the fundamental “handle” used by asyn.
asynUser = pasynManager->createAsynUser(userCallback

process,userCallback timeout);
asynUser = pasynManager->duplicateAsynUser)(pasynUser,

userCallback queue,userCallback timeout);
typedef struct asynUser {

char *errorMessage;
int errorMessageSize;
/* The following must be set by the user */
double timeout; /*Timeout for I/O operations*/
void *userPvt;
void *userData;
/*The following is for user to/from driver communication*/
void *drvUser;
/*The following is normally set by driver*/
int reason;
/* The following are for additional information from method

calls */
int auxStatus; /*For auxillary status*/

}asynUser;

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Standard Interfaces
Common interface, all drivers must implement

• asynCommon: report(), connect(), disconnect()

I/O Interfaces, most drivers implement one or more
• All have write(), read(), registerInteruptUser() and cancelInterruptUser()

methods
• asynOctet: writeRaw(), readRaw(), flush(), setInputEos(), setOutputEos(),

getInputEos(), getOutputEos()
• asynInt32: getBounds()
• asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat64Array:

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free()

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Standard Interfaces - drvUser
• pdrvUser->create(void *drvPvt, asynUser *pasynUser, const char *drvInfo,

const char **pptypeName, size_t *psize);
• drvInfo string is parsed by driver.
• It typically sets pasynUser->reason to an enum value (e.g. mcaElapsedLive,

mcaErase, etc.)
• More complex driver could set pasynUser->drvUser to a pointer to something.
• Example
grecord(mbbo,"(P)(HVPS)INH_LEVEL") {

field(DESC,"Inhibit voltage level")
field(PINI,"YES")
field(ZRVL,"0")
field(ZRST,"+5V")
field(ONVL,"1")
field(ONST,"+12V")
field(DTYP, "asynInt32")
field(OUT,"@asyn($(PORT))INHIBIT_LEVEL")

}
status = pasynEpicsUtils->parseLink(pasynUser, plink,

&pPvt->portName, &pPvt->addr, &pPvt->userParam);
pasynInterface = pasynManager->findInterface(pasynUser, asynDrvUserType,1);
status = pasynDrvUser->create(drvPvt,pasynUser,pPvt->userParam,0,0);

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Support for Interrupts

• The standard interfaces asynInt32, asynInt32Array,
asynUInt32Digital, asynFloat64 and asynFloat64Array all
support callback methods for interrupts

• registerInterruptUser(…,userFunction, userPrivate, …)
– Driver will call userFunction(userPrivate, pasynUser, data)

whenever an interrupt occurs
– Callback will not be at interrupt level, so callback is not restricted

in what it can do

• Callbacks can be used by device support, other drivers, etc.
• Current interrupt drivers

– Ip330 ADC, IpUnidig binary I/O, quadEM APS quad electrometer

4

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

static void intFunc(void *drvPvt)
{
...
for (i = pPvt->firstChan; i <= pPvt->lastChan; i++) {

data[i] = (pPvt->regs->mailBox[i + pPvt->mailBoxOffset]);
}
/* Wake up task which calls callback routines */
if (epicsMessageQueueTrySend(pPvt->intMsgQId, data, sizeof(data)) == 0)

...
}
static void intTask(drvIp330Pvt *pPvt)
{
while(1) {

/* Wait for event from interrupt routine */
epicsMessageQueueReceive(pPvt->intMsgQId, data, sizeof(data));
/* Pass int32 interrupts */
pasynManager->interruptStart(pPvt->int32InterruptPvt, &pclientList);
pnode = (interruptNode *)ellFirst(pclientList);
while (pnode) {

asynInt32Interrupt *pint32Interrupt = pnode->drvPvt;
addr = pint32Interrupt->addr;
reason = pint32Interrupt->pasynUser->reason;
if (reason == ip330Data) {

pint32Interrupt->callback(pint32Interrupt->userPvt,
pint32Interrupt->pasynUser,
pPvt->correctedData[addr]);

}
pnode = (interruptNode *)ellNext(&pnode->node);

}
pasynManager->interruptEnd(pPvt->int32InterruptPvt);

...
}

Support for Interrupts – Ip330 driver

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

• Ip330 ADC driver. Digitizing 16 channels at 1kHz.
• Generates interrupts at 1 kHz.
• Each interrupt results in:

– 16 asynInt32 callbacks to devInt32Average generic device support
– 1 asynInt32Array callback to fastSweep device support for MCA

records
– 1 asynFloat64 callback to devEpidFast for fast feedback

• 18,000 callbacks per second
• 21% CPU load on MVME2100 PPC-603 CPU with

feedback on and MCA fast sweep acquiring.

Support for Interrupts – Performance

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Generic Device Support
• asyn includes generic device support for many standard EPICS records and

standard asyn interfaces
• Eliminates need to write device support in many cases. New hardware can

be supported by writing just a driver.
• Record fields:

– field(DTYP, “asynInt32”)
– field(INP, “@asyn(portName, addr, timeout) drvParams)

• Examples:
– asynInt32

• ao, ai, mbbo, mbbi, longout, longin
– asynInt32Average

• ai
– asynUInt32Digital, asynUInt32DigitalInterrupt

• bo, bi, mbbo, mbbi
– asynFloat64

• ai, ao
– asynOctet

• stringin, stringout, waveform

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Generic Device Support
• The following now use standard asyn device support, and

no longer have specialized device support code:
– Ip330 ADC
– IpUnidig
– quadEM
– dac128V
– Canberra ICB modules (Amp, ADC, HVPS, TCA)

• MCA and DXP records use special device support, because
they are not base record types

• However, the MCA drivers now only use the standard asyn
interfaces, so it would be possible to write a database using
only standard records and control any MCA driver
(Canberra, DXP, etc.).

5

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Generic Device Support
corvette> view ../Db/ip330Scan.template
record(ai,"(P)(R)")
{

field(SCAN,"$(SCAN)")
field(DTYP,"asynInt32Average")
field(INP,"@asyn($(PORT) $(S))DATA")
field(LINR,"LINEAR")
field(EGUF,"$(EGUF)")
field(EGUL,"$(EGUL)")
field(HOPR,"$(HOPR)")
field(LOPR,"$(LOPR)")
field(PREC,"$(PREC)")

}

record(longout,"(P)(R)Gain")
{

field(PINI,"YES")
field(VAL,"$(GAIN)")
field(DTYP,"asynInt32")
field(OUT,"@asyn($(PORT) $(S))GAIN")

}

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Other Device Support

• synApps “ip” application is converted to asyn
– devXxStrParm
– devAiMks – MKS vacuum gauge controller
– devMpc – MPC ion pump and TSP controller

• Love controller support being converted
• GPIB and serial support using configuration files

(gpibCore)
• STREAMS and devAscii being converted

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord
• New EPICS record that provides

access to most features of asyn,
including standard I/O interfaces

• Applications:
– Control tracing (debugging)
– Connection management
– Perform interactive I/O

• Very useful for testing,
debugging, and actual I/O in
many cases

• Replaces the old generic “serial”
and “gpib” records, but much
more poweful

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord – asynOctet devices

Interactive I/O to serial device

Configure serial port parameters

Perform GPIB specific operations

6

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord – Differences from generic
serial and generic gpib records

• ODEL field replaced by OEOS. Changed from a DBF_LONG to DBF_STRING to
support multi-character terminators. The IDEL (serial) and EOS (gpib) fields eplaced by
IEOS. Changed from a DBF_LONG to DBF_STRING to support multi-character
terminators.

• IEOS and OEOS fields only used if modified after connecting to port. Fields set to
current eos strings for the port when connecting.

• INP field replaced by PORT and ADDR fields to support run-time connection to
different devices.

• AOUT and OEOS fields are processed by dbTranslateEscape before being sent to the
device. In rare cases this may require changing the output strings if these contained the
"\" character.

• asyn record always posts monitors on the input field (AINP or BINP) when the record
processes. Older records did not post monitors on the AINP field if the value was the
same as the previous read. This caused problems for some SNL programs and data
acquisition applications.

• ODEL and IDEL were used even when OFMT or IFMT were in "Binary" mode. OEOS
and IEOS are now ignored when OFMT or IFMT respectively are in "Binary" mode,
because readRaw and writeRaw are called.

• TMOT field has changed from DBF_LONG to DBF_DOUBLE, and the units have
changed from milliseconds to seconds. TMOT=-1.0 now means wait forever.

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord – register devices

Same asynRecord, change to ADC port Read ADC at 10Hz with asynInt32 interface

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

asynRecord – register devices

Same asynRecord, change to DAC port Write DAC with asynFloat64 interface

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Synchronous interfaces

• Standard interfaces also have a synchronous interface, even
for slow devices, so that one can do I/O without having to
implement callbacks

• Example: asynOctetSyncIO
– write(), read(), writeRead()

• Very useful when communicating with a device that can
block, when it is OK to block

• Example applications:
– EPICS device support in init_record(), (but not after that!)
– SNL programs, e.g. communicating with serial or TCP/IP ports
– Motor drivers running in separate thread
– iocsh commands

7

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Synchronous interfaces – motor driver
example

• In initialization:
/* Initialize communications channel */
success_rtn = pasynOctetSyncIO->connect(cntrl->asyn_port,

cntrl->asyn_address, &cntrl->pasynUser, NULL);

• In IO:
pasynOctetSyncIO->write(cntrl->pasynUser, com, strlen(com),

TIMEOUT, &nwrite);

status = pasynOctetSyncIO->read(cntrl->pasynUser, com, BUFF_SIZE,
timeout, &nread, &eomReason);

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

iocsh Commands

asynReport(filename,level,portName)
asynInterposeFlushConfig(portName,addr,timeout)
asynInterposeEosConfig(portName,addr)
asynSetTraceMask(portName,addr,mask)
asynSetTraceIOMask(portName,addr,mask)
asynSetTraceFile(portName,addr,filename)
asynSetTraceIOTruncateSize(portName,addr,size)
asynSetOption(portName,addr,key,val)
asynShowOption(portName,addr,key)
asynAutoConnect(portName,addr,yesNo)
asynEnable(portName,addr,yesNo)
asynOctetConnect(entry,portName,addr,oeos,ieos,timeout,buffer_len)
asynOctetRead(entry,nread,flush) asynOctetWrite(entry,output)
asynOctetWriteRead(entry,output,nread) asynOctetFlush(entry)
asynOctetSetInputEos(portName,addr,eos,drvInfo)
asynOctetGetInputEos(portName,addr,drvInfo)
asynOctetSetOutputEos(portName,addr,eos,drvInfo)
asynOctetGetOutputEos(portName,addr,drvInfo)

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Tracing and Debugging
• Standard mechanism for printing diagnostic

messages in device support and drivers
• Messages written using EPICS logging facility,

can be sent to stdout, stderr, or to a file.
• Device support and drivers call:

– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from

iocsh, vxWorks shell, and from CA clients
such as medm via asynRecord.

• asynOctet I/O from shell

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Current asyn Drivers
• Unix/Linux/vxWorks/cygwin serial ports
• TCP/IP sockets
• GPIB via National Instruments VME, Ethernet/GPIB devices, Ip488

Industry Pack modules
• VXI-11
• IpUnidig digital I/O (Industry Pack). Supports interrupts.
• dac128V digital-to-analog (Industry Pack)
• Ip330 analog-to-digital (Industry Pack). Supports interrupts.
• Canberra AIM multi-channel analyzer and ICB modules (Ethernet)
• XIA DXP DSP spectroscopy system (CAMAC, EPP, PXI soon)
• APS quad electrometer (VME). Supports interrupts.
• epid record fast feedback (float 64 with callbacks for input, float64 for

output)
• Mca fast-sweep (Int32Array with callbacks)

8

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Fast feedback device support (epid record)
• Supports fast PID control
• Input: any driver that

supports asynFloat64 with
callbacks (e.g. callback on
interrupt)

• Output: any driver that
supports asynFloat64.

• In real use at APS for
monochromator feedback
with IP ADC/DAC, and
APS VME beam position
monitor and DAC

• >1kHz feedback rate

GeoSoilEnviroCARS Getting Started with EPICS November 18, 2004

Summary- Advantages of asyn
• Drivers implement standard interfaces that can be accessed from:

– Multiple record types
– SNL programs
– Other drivers

• Generic device support eliminates the need for separate device support in
90% (?) of cases
– synApps package 10-20% fewer lines of code, 50% fewer files with asyn

• Consistent trace/debugging at (port, addr) level
• asynRecord can be used for testing, debugging, and actual I/O applications
• Easy to add asyn interfaces to existing drivers:

– Register port, implement interface write(), read() and change debugging output
– Preserve 90% of driver code

• asyn drivers are actually EPICS-independent. Can be used in any other
control system.

